A solid record of achievement has always been the hallmark of Auburn Engineering. From our beginnings in the 1870s, when the first classes in civil engineering were taught, to 1908, when our first engineering dean was named, we have remained a program closely tied to the economic development of the state and region.

This philosophy is especially pertinent in today's global economy. The innovation and creativity that is the benchmark of an engineer is crucial to expanding our role in this economy. Now more than ever, we have to redefine the way we look at research and development, as well as design, manufacturing and infrastructure.

As a result, the role of graduate education and research has never been more important. To this end, we are now focusing our efforts on doubling our graduate enrollment, and increasing the annual levels for research awards per faculty member from $250,000 to $265,000. It is no secret that together university research and graduate education is the engine that drives economic development.

We are well on our way to fulfilling a commitment that is rooted in a promise to wireless pioneer Samuel Ginn, whose leadership support of Auburn Engineering has drawn many more friends and alumni into our vision— to move Auburn University’s College of Engineering into the nation’s elite. You will see this commitment reflected in this annual report. I ask for your support and participation as we work together to meet tomorrow’s challenge.

From the Dean
Academics

The cultural accumulation of knowledge, its development and transmission across generations.
Global Education Initiative
37 study sites in 10 countries in Asia, Europe and South America

2007 Freshman Class
1053 enrolled
23 states and D.C.
67% from Alabama
15.4% African American

Fall 2007 Enrollment by Department

Source: AU Office of Institutional Research and Assessment
“The important truths [are]
knowledge is power,
knowledge is safety,
knowledge is happiness.”

Thomas Jefferson
Maintaining the Edge

Engineering education matters. It matters to students. It matters to our nation and to our future. The Samuel Ginn College of Engineering recognizes that one of the keys to maintaining this future is graduate education.

That's because the expansion and transfer of knowledge associated with university research in the sciences and engineering drives innovation, fueling the nation's economy.

In recent years, countries such as India and China have jumped ahead of the U.S. in the numbers of students who choose to study engineering and the sciences. That discrepancy is putting our nation’s position as a world technological leader and our quality of life at risk.

“Graduate students are the foot soldiers in university research,” explains Larry Benefield, dean of the college. “They carry out research developed by their major professors and along the way, gain the skills needed to become tomorrow’s technological leaders.”

Ramping It Up

So why are so few U.S. students choosing graduate school? The rising costs of education play a part; so do the hefty starting salaries being offered to graduates with bachelor’s degrees in engineering – ranging from $50,000-70,000.
According to Benefield the solution lies in a partnership between the public and the private sector.

The dialogue on this issue is occurring at the highest levels. Federal and state programs are priming the pump with financial support to students studying in disciplines critical for national security. President Bush recently doubled support for NSF as part of the American Competitiveness Initiative.

AU engineering faculty members have been working overtime writing the proposals necessary to tap into these resources and use them as seed money to generate additional funding to support graduate programs and students.

The result has been a steady increase in extramural funding and associated support for graduate assistantships. The college has also funded a number of new graduate fellowships and is working hard to generate additional fellowship endowments through its development efforts.

Broader Benefits

In addition to creating the leaders of tomorrow, a strong graduate program also enhances undergraduate education, generates new technologies, and impacts the overall reputation of an institution.
“The correlation between the strength of a school’s graduate program and its rankings is strong,” says Joe Morgan, associate dean for academics for the college.

That’s because an active research program helps to ensure that graduate and undergraduate students are exposed to cutting-edge technologies in both the labs and the classrooms. It also provides opportunities for research-minded undergraduate students to gain laboratory experience with real-world problems.

New technologies developed in AU labs not only generate income for AU through licensing agreements, but also become the companies that fuel Alabama’s economy – similar to what has happened in Silicon Valley, the tri-cities in North Carolina and the 128 corridor around Boston. A hint of things to come: over the summer, AU’s Office of Technology Transfer announced the formation of four new companies selling products using AU technologies. Two have located in Alabama.

“Clearly, our position as a global leader is at risk,” says Benefield. “The actions needed to address this issue are just as clear. I have challenged our faculty to take a leadership role in the state. Based on progress to date, it appears that the future will be a bright one.”
Business Engineering
Bridging the Gap

Bridging the gap between two cultures has never been easy. This is especially true in knowledge-based technology-driven firms, where efficient communication is critical to staying ahead of the changing marketplace.

In response to this need, Auburn created the Business-Engineering-Technology minor, a selective program that brings undergraduate students from the Samuel Ginn College of Engineering and Auburn’s College of Business together to successfully operate on either side of the business-technology divide.

B-E-T courses involve guest lectures by senior managers from industry, cross-disciplinary learning opportunities, as well as international partnerships with students from other schools. For example, Auburn students work with peers from the University of Plymouth in the United Kingdom and the Indian Institute of Technology in India on collaborative business development projects.
“As the business world becomes increasingly diverse, it is important that students leave Auburn Engineering with an excellent understanding of how commerce works both in the United States and around the globe,” says Paul Swamidass, director of the Thomas Walter Center for Technology Management. “When students leave the B-E-T program, they have experienced first hand how industry functions outside their home environment and are better prepared for their future endeavors.”

A Team Effort

The success of the B-E-T program can be attributed not only to its outstanding students and faculty, but also to the college’s alumni and other supporters. Benefactors such as Kennie Matthews, Chris Baker and Gary Godfrey, as well as the Alabama Power Foundation, through a gift in honor of the late J.J. Thomley, have provided significant scholarship support for B-E-T students.

“From the initial gift for the Thomas Walter Center to the scholarship gifts that are being made today, alumni continue to show their support for the mission of the B-E-T program and for the outstanding engineers and business professionals the program continues to produce,” says Swamidass.
Friends and Benefactors

Auburn’s unique and innovative B-E-T program owes its existence to a friendship forged on the decks of an Atlantic fleet destroyer. It was aboard this ship that 1955 Auburn engineering physics grad John Thomas Walter Jr. met H. Ross Perot, founder of the computer service company EDS. This meeting set the stage for a friendship and business relationship that has spanned decades.

In 1989, in honor of his friend and his distinguished career with EDS, Perot granted $2.6 million to Auburn University to create the Thomas Walter Center for Technology Management, home of the National Consortium for Technology in Business. In an effort to further support the center, Walter and his wife Jean made a generous gift of $1 million to the center through the Communities Foundation of Texas.

The center is designed to help private organizations increase productivity and effectiveness through the use of cutting-edge technology. As a joint effort between the Samuel Ginn College of Engineering and Auburn’s College of Business, the center is critical to the advancement of research and technology within these fields and is home to the B-E-T program.

“The B-E-T program fills a need in both engineering and business education,” says Walter. “This curriculum has proven to be viable, and it is our hope that this gift will help move the program to become self-sustaining at Auburn and become a model for other institutions.”
A Driving Force

Auburn is meeting the challenge of the Southeast’s rapidly growing automotive infrastructure through the creation of a unique, fully-accredited automotive engineering minor offered by faculty in mechanical engineering and industrial and systems engineering. This new academic thrust represents the continuing development of automotive engineering education at Auburn, and replaces an automotive certificate program created earlier to meet the technical needs of industry.

Indeed, the Samuel Ginn College of Engineering has built a track record of placing graduates in the Southeast’s automotive sector, which includes major production facilities for Honda, Hyundai, Kia, Mercedes and Toyota, as well as BMW, Ford and Saturn. Peter Jones, a member of the mechanical engineering faculty who coordinates the program, also points to the opportunities provided by many supplier companies, heavy truck builders such as Navistar, boutique sport car builders such as Panoz, and racing teams such as Hendrick Motor Sports.

Students in the program take 15 hours beyond the general requirements for the bachelor’s degree. They must be enrolled in engineering curricula, which differentiates the program from minors that draw from curricula that may be unrelated. A $400,000 scholarship grant from the National Science Foundation is expected to draw students into the minor, helping to offset the cost of the additional semester devoted to fulfilling program requirements.

“Auburn has the personnel, background, focus and vision to make the program work,” adds John Evans, industrial and systems engineering’s track coordinator. “Students are able to choose from two areas of study – product design in mechanical engineering or a manufacturing option in the ISE department. These areas work well together to give our students the kinds of career options that expose them to a wide range of automotive opportunities.”
The Female Factor

As engineering employers look to diversify their work force, they are turning to top engineering schools such as Auburn University to provide bright and talented women graduates.

Bonnie Wilson, recruiter for the Samuel Ginn College of Engineering and 1997 civil engineering alum, says that one key to meeting the college’s recruiting goal of increasing enrollment of females from 12 to 20 percent by 2008 is to sell the program a little differently to female high school students.

“Today’s young women tend toward careers that have a altruistic element, such as preserving the environment or directly improving the lives of people and animals,” she says. “I tell them you can do that with engineering.”

Wilson, who came to Auburn after spending almost a decade as a professional engineer with a paving firm, says that having the only woman recruiter among Southeast engineering colleges is a plus for Auburn. “Meeting a woman in engineering is so important to these young women. I can answer their questions because I have been there and done that. I am an example of how many options an engineering degree can provide, and how valuable it can be in building a fulfilling career.”
That is why the university is implementing initiatives such as the National Science ADVANCE Program and the Women in the Sciences and Engineering (WISE) Institute that help recruit and retain female faculty in science and engineering – who demonstrate to female students that they too can succeed in these fields.

“I never thought of myself as a role model, but I’ve learned that my presence in the classrooms and labs matters,” says Virginia A. Davis, chemical engineering faculty member. “The students see first hand that I have been able to have a successful career in both industry and in academia while having a family life – and that they can, too.”
Research

A human activity based on intellectual investigation and aimed at discovering, interpreting and revising human knowledge on different aspects of the world.
Engineering Faculty comprise 12.8% of all AU faculty, yet bring in more than half of AU’s research awards.

2006 Research Expenditures by Department

AU Engineering Research Proposals and Expenditures

<table>
<thead>
<tr>
<th>Year</th>
<th>Research Expenditures</th>
<th>ASEE Research Expenditure Ranking</th>
<th>Graduate Degrees Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>$15.8M</td>
<td>80</td>
<td>122</td>
</tr>
<tr>
<td>2003</td>
<td>$26.6M</td>
<td>54</td>
<td>158</td>
</tr>
<tr>
<td>2004</td>
<td>$30.5M</td>
<td>55</td>
<td>166</td>
</tr>
<tr>
<td>2005</td>
<td>$33.4M</td>
<td>52</td>
<td>170</td>
</tr>
<tr>
<td>2006</td>
<td>$36.3M</td>
<td>49</td>
<td>174</td>
</tr>
</tbody>
</table>

Source: American Society for Engineering Education
Extramural Funding
Summary of active grants 2006 - 2007

<table>
<thead>
<tr>
<th>ABRD-Biomass</th>
<th>Diversified Technology</th>
<th>National Textile Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAI-Biodiesel</td>
<td>DRS Test and Energy Management</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>Alabama Department of Transportation</td>
<td>EG&G</td>
<td>National Science Foundation (NSF) Antarctic Sciences</td>
</tr>
<tr>
<td>Alabama Power</td>
<td>Environmental Protection Agency</td>
<td>NSF Directorate for Social, Behavioral and Economic Sciences</td>
</tr>
<tr>
<td>AlchemCast</td>
<td>ETRI</td>
<td>NSF Division of Chemical, Bioengineering, Environmental and Transport</td>
</tr>
<tr>
<td>ACIPCO</td>
<td>Federal Aviation Administration</td>
<td>NSF Division of Chemical and Transport Systems</td>
</tr>
<tr>
<td>Alabama Department of Economic and Community Affairs</td>
<td>Flying Saucer Aviation Incorporated</td>
<td>NSF Division of Civil and Mechanical Systems</td>
</tr>
<tr>
<td>AMTEC</td>
<td>Freedom Transports</td>
<td>NSF Division of Civil, Mechanical and Manufacturing Innovation</td>
</tr>
<tr>
<td>APA</td>
<td>FuelCell Energy</td>
<td>NSF Division of Computer and Network Systems</td>
</tr>
<tr>
<td>APAC</td>
<td>General Atomics</td>
<td>NSF Division of Engineering Education and Centers</td>
</tr>
<tr>
<td>Applied Microstructures</td>
<td>Georgia Department of Transportation</td>
<td>NSF Division of Materials Research</td>
</tr>
<tr>
<td>Applied Research Associates</td>
<td>Georgia Institute of Technology</td>
<td>NSF Division of Social and Economic Sciences</td>
</tr>
<tr>
<td>ASI-Micro Gyroscope</td>
<td>GPD Optoelectronics</td>
<td>NSF Office of International Science and Engineering</td>
</tr>
<tr>
<td>Awwa Research Foundation</td>
<td>Hughes Christensen</td>
<td>Ohio Aerospace Institute</td>
</tr>
<tr>
<td>Battelle</td>
<td>Hyundai</td>
<td>Oklahoma Department of Transportation</td>
</tr>
<tr>
<td>Bharat Serums</td>
<td>Integrated Concepts and Research Corp.</td>
<td>Oldcastle Materials</td>
</tr>
<tr>
<td>Blue Ember Technologies</td>
<td>Intermap Technologies</td>
<td>Oshkosh Truck</td>
</tr>
<tr>
<td>Boeing</td>
<td>Intramicon</td>
<td>Parker Hannifin</td>
</tr>
<tr>
<td>Brigham Young University</td>
<td>Jabil Circuit</td>
<td>Pb Americas</td>
</tr>
<tr>
<td>Burns Cooley Dennis</td>
<td>Jet Propulsion Laboratory</td>
<td>PBS&J</td>
</tr>
<tr>
<td>Camstar</td>
<td>Korea Institute of Industrial Technology</td>
<td>Phase IV Systems</td>
</tr>
<tr>
<td>Caterpillar</td>
<td>LG Electronics</td>
<td>PIsacecki Aircraft</td>
</tr>
<tr>
<td>Chart Energy & Chemicals</td>
<td>Masada</td>
<td>PolyPlus Battery</td>
</tr>
<tr>
<td>Choctawhatchee, Pea and Yellow Rivers Watershed Management Authority</td>
<td>MEMSense</td>
<td>PQ Corporation</td>
</tr>
<tr>
<td>Ciba Vision</td>
<td>MITRE</td>
<td>Pukyong National University</td>
</tr>
<tr>
<td>Concurrent Technologies Corporation</td>
<td>Motorola</td>
<td>Purdue</td>
</tr>
<tr>
<td>Defense Intelligence Agency: Missile and Space Intelligence</td>
<td>National Aeronautics and Space Administration</td>
<td>Ridgetop Group</td>
</tr>
<tr>
<td>Department of Education</td>
<td>National Asphalt Pavement Association</td>
<td>Rotem</td>
</tr>
<tr>
<td>Department of Federal Highway Administration</td>
<td>National Center for Asphalt Technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Center for Biotechnology of the Republic of Kazakhstan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Security Agency</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Active Grants 2006 - 2007

- Federal Government: 23.6%
- State Government: 9.0%
- Corporations: 34.4%
- Other: 33.0%
War and training for war are hazardous. So is the aftermath.

Unexploded ordnance from at least as far back as the First World War poses a significant hazard worldwide, both in former combat areas and on military firing ranges. Bombs, mortars, missiles, hand grenades – the list is long and the cleanup complex and dangerous. But thanks to a clever autonomous robot-trailer system developed at Auburn University in partnership with the U.S. Army Corp of Engineers, the task may soon become less risky, and more cost-efficient.

On the home front, the U.S. Environmental Protection Agency reports that unexploded ordnance (UXO) on 1,400 inactive military test ranges poses an imminent public health risk and clean up costs that could set taxpayers back by a cool $390 billion. Beyond the obvious danger of explosion, buried UXO can also release heavy metals and toxic compounds such as perchlorate into the groundwater.

Current methods of tracking buried explosives, involving humans repeatedly crisscrossing these sites in a tight grid pattern with hand-held and man-towed sensor systems, are time consuming and aren’t very good at distinguishing UXO from other metallic debris. According to John Hung, electrical and computer engineering faculty member, 76 percent of the $200 million spent each year on cleanup is used to dig up items that are not UXO.
Working with a Segway RMP robot, towing a trailer and guided by a GPS/INS positioning system, Hung and doctoral candidate David Hodo have developed an innovative computer program that allows hazardous sites to be thoroughly and precisely searched.

The system is safer, works under a wider range of conditions than human workers, and yields higher quality data. This translates into more accurate location of target items, improved productivity, and lower cost.

“As population centers grow out towards some of these previously remote testing ranges, it becomes increasingly critical to get these sites cleaned up,” says Hung. “Recent base closings have also increased interest in selling off surplus land. Our little robotic system offers a way to make these sites safe.”
Understanding the Enemy

Congestive heart failure is a formidable foe. Affecting more than 4.7 million people in the United States, it is the leading cause of hospitalization in people older than 65. It also plagues man's best friend. Recently the National Institute for Health (NIH) declared war on this unremitting enemy.

The NIH created five Specialized Centers of Clinically Oriented Research (SCCOR) – including a collaborative effort between the University of Alabama at Birmingham (UAB) and Auburn University’s Samuel Ginn College of Engineering and School of Veterinary Medicine. The five-year $18 million program, housed at UAB, combines the expertise and resources of the two institutions to more fully understand how and why heart failure occurs.

Congestive heart failure can result from any structural or functional cardiac disorder that impairs the ability of the heart to fill with or pump a sufficient amount of blood through the body. The UAB/AU effort targets three of the most difficult to treat kinds of heart failure – medication resistant hypertension, diabetes, and valvular heart disease. Together they account for more than half of the patients with heart failure.

"The power of this effort is that we are running basic science and clinical studies concurrently, decreasing the time it takes to understand heart muscle disease and to improve the care of the increasing number of patients living with heart failure," says Denney, electrical and computer engineering faculty member.

MRI images of patients with healthy and diseased hearts captured at UAB and AU's veterinary school are sent to Denney for analysis. Denney has developed techniques for quantifying how much the heart muscle contracts and other indicators of cardiac health from this MRI data. This analysis, combined with repeated MRI scans, is already revolutionizing the understanding of the heart's response to disease.

"We are learning that the heart is very good at accommodating when challenged by damage from heart attack, valve failure or diabetes," says Denney. "However, with each beat of the heart, there is a price to pay for this increase in workload."

Denney's analysis has already improved doctors' understanding of the consequences of the different kinds of heart failure, and hopefully will allow them to quantify the impact that targeted drug therapies have on patient prognosis.

"We anticipate that the results will lead to changes in treatment of heart failure patients, leading to a longer and improved quality of life, for man and his best friend," says Denney.
In the world of environmental contaminants, mercury is on the most wanted list. This neurotoxic bad apple tends to accumulate as it moves through the food chain, unfortunately ending up in the fish we eat. In fact, 75 percent of the fish advisories in the U.S. and Europe are related to mercury contamination.

But if AU civil engineering faculty member Mark Barnett and Kaye Savage, faculty member of earth and environmental sciences at Vanderbilt, have their way, the mercury found at old mine, military and industrial sites may soon be contained by underground walls of fool’s gold, preventing it from making its way into our fish dinner. Their work is funded by the U.S. Environmental Protection Agency.

In its pure form, mercury, also known as quicksilver, is found naturally in soils. However, human activities ranging from the burning of coal to industrial processes have extracted and concentrated this mercury, increasing movement into the air and water, where it can be converted into methylmercury. In this form, mercury can enter the aquatic food chain, reaching dangerous concentrations in the fish we eat.

“The National Research Council estimates that each year 30,000-60,000 children are born with neurodevelopment problems related to mercury exposure while in utero,” explains Barnett. “Mercury-laden soils at industrial sites can be excavated and incinerated. However, the process is expensive and can result in mercury becoming airborne, spreading contamination.”
Barnett’s team has identified a promising new technology that instead creates a reactive barrier of pyrite – better known as fool’s gold. It turns out that this abundant and inexpensive sulfur-containing mineral does a bang-up job of intercepting and immobilizing mercury in groundwater, preventing or significantly dampening its effect on natural water bodies.

Current testing at Auburn and at the world-class Advanced Photon Source at Argonne National Laboratory has confirmed that the basic science works. Next come tests with contaminated water and field soils, with real-world field trials already being planned.

“This technology offers a cost-effective way to corral mercury and prevent it from entering groundwater and the food chain,” Barnett explains. “While the methodology is new, the concept of creating a permeable reactive barrier is already in use at sites with other groundwater contaminants, which should speed implementation.”

And as anyone that works with mercury can tell you, sooner is better than later.
As a former U.S. Army field artillery officer and West Point faculty member, Drew Hamilton understands warfare. And, as director of the Auburn University Information Assurance Center (IAC), he knows our country is fighting a new kind of battle.

“What we see less often is the information war that is being waged every day across the Internet, one that attacks not only defense networks, but business, industry and even academic systems,” says Hamilton, computer science and software engineering faculty member.

Information assurance applies to a wide range of critical infrastructures: banking, the power grid, civil and military communications, as well as the day-to-day operations of most organizations. It can be industry spying on industry, government against government, protester against institutions, criminals versus the banking system ... and all this is going on even as our dependence upon networked information systems increases.

The IAC works to develop new techniques to assure secure and accurate data transmission, reception and storage. Currently, researchers focus on network security, information warfare, cryptography, information policy and computer forensics. The IAC researchers also play a key role in supporting Auburn’s Center for Innovations in Mobile, Pervasive and Agile Computing Technologies and Information Assurance (IMPACT-IA) and the college’s wireless curriculum. The IAC is the primary resource for emerging information assurance curricula, and has been exceptionally successful in securing external funding, with seven active grants totaling more than $2 million.

“Anyone can ask themselves ‘Is my job affected if I lose network connectivity?’” Hamilton says. “Increasingly, the answer is yes. As one of the world leaders in information technology, the U.S. is one of the largest targets for information warfare … and one of the most vulnerable.”
Outreach

An effort by an organization or group to connect its ideas or practices to the efforts of other organizations, groups, specific audiences or the general public.
Between 2005 and 2007:

- Awarded 50 degrees
- Offered more than 200 classes
- Served 600 students from 35 states and a number of military installations

We serve:

- Customers from the U.S., Canada, Korea and the Virgin Islands
- More than 1,000 repeat customers each year
Computers 101

It’s a computerized world, and Auburn Engineering is making sure that even the youngest students are prepared for a technological future.

Focusing specifically on children with disabilities, Daniela Marghitu, Comp 1000 coordinator in the Department of Computer Science and Software Engineering, launched the Computer Literacy Academy for Children in summer 2005. This free, multidimensional computer literacy pilot program is designed to enhance computer knowledge for special needs children.

“Computers are conducive to learning for all children, particularly children with special needs, because the pace can be adapted to the children’s response level,” says Marghitu.

The program adds more advanced concepts each year and this year’s curriculum was specifically chosen to focus on increasing computer and communication skills such as grammar, following directions, sequencing and reasoning. Funding for the program was provided by the Auburn University Breeden Endowment and the International Disabilities, Opportunities, Internetworking and Technology (DO-IT) Center.

Another of Marghitu’s K-12 outreach projects is ROBO CAMP, an advanced version of the Computer Literacy Academy. Launched in 2007 and taught by graduate students from the Department of Computer Science and Software Engineering, the curriculum reinforces children’s computer literacy knowledge while introducing them to more advanced concepts and hands-on applications of computer programming and robotics.

“I simply love to see the children having so much fun that they don’t realize how much they are learning,” says Marghitu. “If these children can carry that excitement and skills into their regular classroom, then we have been successful.”

Alabama Engineering Academy

Summer camps and other on-campus programs aren’t the only way Auburn Engineering is getting involved with high school students. The Alabama Engineering Academy Initiative will encompass 16 Alabama schools in an effort to increase the number of graduates selecting engineering careers by preparing them to study advanced mathematics and sciences.

The program is the partnership between the high schools and Alabama’s seven engineering undergraduate programs. Funding has been provided by the University of Alabama System, Auburn University and the Alabama State Department of Education.
No Campus Required

Today’s engineers are hard-pressed to stay abreast of rapidly changing technologies. Auburn Engineering recognizes the challenge of juggling hectic family lives and jobs that require long hours and lots of travel. That’s why we are taking our outreach programs to engineers, letting them learn on their own time, in their own way.

This has made the college’s outreach program one of the most highly acclaimed in the nation – and has helped Auburn gain visibility and a reputation among thousands of engineers, including many who have never set foot on the Auburn campus.

“Once people take one of the college’s 80 professional development courses via the Web or DVD, they’re hooked,” says Wanda Lambert, outreach marketing director. “Our clients like the convenience, moderate cost, quality content, and level of expertise of the instructors. They consider it time well-spent to advance their knowledge of the profession.”

In fact, all 35 states that require professional development to retain engineering and surveying licenses highly recommend Auburn’s courses because they are research-based and include tests to ensure professionals fully understand program content.
The college also educates 6,000 professional engineers in real-world classrooms through our flagship Technology Transfer (T²) Program which has helped cement Auburn’s reputation as a national leader in educational outreach for the transportation industry. Each year, T² conducts nearly 80 seminars in counties across Alabama to educate the state’s highway engineers and surveyors, rural transit providers, and DOT employees on the latest technologies. This cutting-edge content brought to their neighborhood helps to ensure that Alabama’s road and bridges remain safe and sound — more relevant now than ever in light of the recent Minneapolis bridge collapse.
The Ties that Bind

Like a family, a university is made of people. There are ancestors that come before us, relatives that coexist along side us, and offspring that come after us. They are people who have a certain connection with us – family members so to speak.

Auburn’s College of Engineering is no different. Those who knew Auburn Engineering once are deeply connected to those who know it now and those who will come to experience it in the future. We call them alums – and their involvement in our engineering family is invaluable.
“It Begins at Auburn” Campaign

$500 million AU goal
$105 million College of Engineering goal

Engineering produces 12% of Auburn graduates, but accounts for 21% of the university’s campaign goal – making it the largest campaign goal of any academic unit.

Year-to-date, we have reached 95% of our campaign goal having raised just over $100 Million.
A native of Chattanooga, Kate was playing soccer for Millsaps College in Jackson, Miss. and studying French when she decided to transfer to Auburn. Thanks to the influence of a high school chemistry teacher, Kate majored in chemical engineering and today works in project development as a chemical engineer with ExxonMobil Research and Engineering in Baytown, Texas.
“I came to Auburn Engineering and was greeted by these amazing professors who were incredibly intelligent, yet down-to-earth and very nurturing. They really cared about my development as an engineer. Dr. Maples’ hard homework and tests taught us thermodynamics — and a lot of other life lessons. The Cupola Engineering Society allowed me to interact with the dean and engineering alumni, and I was surrounded by people who truly embodied the Auburn spirit.

The chemical engineering department was my Auburn. Most of my time was spent in the Chem E buildings. Those experiences are why I love Auburn and why I give to the College of Engineering. Auburn gave to me — it gave me my future, my friends and my college home. The education I received from Auburn is the reason I have the great job that I do. I want to continue that tradition for future students.”
“The knowledge that I gained and the personal relationships that I developed at Auburn have continued to pay dividends throughout my career. As an engineering student, I learned the value of hard work, the satisfaction of solving complex problems and the importance of maintaining balance in life. I was fortunate to serve as student body president at the same time that I was pursuing my degree in civil engineering.

I spent time with a wide variety of students, faculty, administrators and classmates from across the campus. It was during this time that I came to appreciate my closest circle of friends and fraternity brothers as they provided support – and more than a few laughs along the way.

I had a very positive experience at Auburn, so it is important to me to support the college with my time and my gifts. I want to ensure that other young engineers receive the same benefits from their Auburn experience.”
In his role as regional president for Brasfield & Gorrie, one of the Southeast’s leading contracting and construction management firms, Stone oversees operations for more than $1 billion in annual construction revenues, 11 operating divisions, and projects in 15 states. Auburn is deeply woven into the fabric of his life, as many of his family members claim Auburn as their alma mater including his wife and daughter. His son is currently a freshman.
Up to the Challenge

The Kresge Foundation has issued Auburn Engineering a challenge ... a challenge with a $1.5 million payoff.

In September, the Foundation, one of the nation's leading charitable organizations, awarded the Samuel Ginn College of Engineering a $1.5 million challenge grant to aid in efforts to achieve our ambitious $105 million “It Begins at Auburn” campaign goal.

Established in 1924 by Sebastian S. Kresge, the father of the Kresge “5 and 10 cent” store and K-Mart, the Foundation is recognized for supporting organizations that have loyal donors, engaged boards, effective leadership and committed volunteers – a good description of Auburn's engineering program.

The grant is designed to supplement the gifts of the college’s most committed benefactors, requiring that we first meet our fundraising goals – with Kresge making its gift when the college has reached its $105 million “It Begins at Auburn” campaign goal.

The funds provided by Kresge will assist in constructing the state-of-the-art Sen. Richard C. and Dr. Annette N. Shelby Center for Engineering Technology -- a facility that will support the college’s vision to become one of the nation’s top engineering institutions.

Auburn Engineering is proud to have such a renowned organization demonstrate its belief in our vision and goals, and acknowledge the commitment and generosity of our friends and alums. There is no doubt that our engineering family will rise to the challenge.